Reprinted from Mathematics Magazine 41.1(1968)49.

Comment on Problem 637

637. [November, 1966, and May, 1967] Proposed by Stanley Rabinowitz, Far Rockaway, New York.

Prove that a triangle is isosceles if and only if it has two equal symmedians.

Comment by the proposer.
The published solution only proves half of the theorem. The fact that a and b can be interchanged without affecting the equality only proves that if $a=b$, then $k_{a}=k_{b}$.

Conversely, if $k_{a}=k_{b}$, then $k_{a}{ }^{2}=k_{b}{ }^{2}$ which implies that $\left(b^{2}-a^{2}\right)\left[4 a^{2} b^{2} c^{2}\right.$ $\left.+2 c^{4}\left(b^{2}+a^{2}\right)+2 c^{6}+a^{2} b^{2}\left(b^{2}+a^{2}\right)\right]=0$, which for positive a, b, c implies that $a=b$.

To see the need for this, suppose

$$
\begin{aligned}
& k_{a}=a(a+b-2 c) \\
& k_{b}=b(a+b-2 c),
\end{aligned}
$$

then a and b can be interchanged without affecting the equality but k_{a} can equal k_{b} even if $a \neq b$, i.e., when $a+b=2 c$; because $k_{a}-k_{b}=(a-b)(a+b-2 c)$.

